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Note 

Application of the El-Gendi Method to 
the Schrijdinger Integral Equation 

Radial wave functions ur(r) and scattering phase shifts 6,(k) of short range local 
interactions V(r) are most frequently determined at positive energies k2 (in the center 
of mass frame) by solving numerically the partial-wave Schrijdinger differential 
equation 

(1) 

under the boundary conditions 

ul(r) - q(k) rl+l as r-t0 

- kr[j,(kr) - tan S,(k) n,(kr)] 
(2) 

as r--tu3, 

where jr and nc are the spherical Bessel and Neumann functions, respectively. A 
previous paper [I] contains results obtained by solving this boundary value problem 
via the standard fourth-order Runge-Kutta method [2] and Numerov’s method [2]. 
It was found that both methods yield reliable phase shifts when they employ a step 
length h < 0.01 and matching points determined from the condition kr > 25. 
However, both methods exhibited instability at very low energies with I > 1. 

An alternative approach, also investigated in Ref. [I], is to transform the differential 
equation (1) and its associated boundary conditions (2) into the integral equation [3] 

%(r) = krj,(kr) + J‘,= G,(r, r’) V(r’) uz(r’) dr’ (3) 

in which the Green’s function takes the form 

Gl(r, r’) =: krr ‘j,(kr) n,(kr’) for r <r’ 

= krr’j,(kr’) q(kr) for r > r’. 
(4) 

By comparing the second of the boundary conditions (2) with the integral equation (3) 
when r > r’ we obtain the phase shift formula 

tan 6,(k) = - lrn r yl(kr’) V(r’) ut(r’) dr’. (5) 
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The infinite upper limits of the integrals in Eqs. (3) and (5) can be removed by using 
the substitution 

r = x/(1 - x), (6) 

which maps the interval 0 < r < co on to the interval 0 < x < 1, to obtain 

udr) = kjdkr) + Jo1 (l 2 x,)2 Gdr, r’) V(r’) udr’) dx’ 

and 

tan 6,(k) = - jO’ TTTjt(kr) V(r) uL(r) dx @I 

in which the local interaction V(r) vanishes when x (or x’) equals unity. 
In Ref. [l] the standard numerical approach for solving Fredholm integral equations 

of the second kind was now followed: the integrals on the right-hand sides of Eqs. (7) 
and (8) were replaced by a quadrature formula in order to reduce the former equation 
to a closed system of simultaneous linear algebraic equations for the radial wave 
function by restricting r to the pivotal points of the numerical integration. The solution 
of these linear equations was then substituted into the quadrature approximation 
representing the right-hand side of Eq. (8) in order to compute the phase shift 6,(k). 
It was also clearly pointed out in Ref. [1] that care must be exercised when setting up 
the quadrature approximation to Eq. (7) because of the discontinuity in aG,/kTr’ 
at r’ = r (i.e., at x’ = x). 

The only Newton-Cotes integration formula which is always unaffected by the 
discontinuity in aGJ&’ is the composite trapezoidal rule. The application of the com- 
posite version of a higher-order formula to Eq. (7) could result in the possibility of 
an undefined error term in the quadrature approximation. Reference [1] contains I 
results of calculations performed with the trapezoidal rule and Simpson’s rule; 
both methods have been found to be completely stable at all energies for any value 
of the orbital angular momentum, with the trapezoidal rule exhibiting the faster 
rate of convergence with respect to the number of pivotal points employed (due to 
the discontinuity in aG,/ar’ having some affect on Simpson’s rule). The application 
of Gauss-Legendre quadrature formulas is also discussed in Ref. [1] where it is 
considered more appropriate to employ the transformation 

r = (1 + x)/U - 4, (9) 

which maps the interval 0 < r < co on to the interval - 1 < x < 1, rather than 
Eq. (6) so that Eqs. (3) and (5) become respectively 

udr) = krj,(kr) + j:l (l 2 x,)2 Gdr, r’) V(r’) udr’) Ax (10) 

and 

tan S,(k) = -2 .If, {ll ? Gt j,(h) V(r) q(r) dx. 
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As the use of an n-point Gauss-Legendre formula normally requires the integrand 
to be differentiable at least 2n times [4] within the open interval (- 1, 1), there is the 
possibility of an undefined error term arising when such a formula is employed to 
approximate the integral in Eq. (lo), because of the discontinuity in aG@‘. However, 
it is shown in Ref. [1] that Gauss-Legendre formulas yield stable results at all energies 
for any value of I, their rate of convergence being approximately the same as that for 
the composite version of Simpson’s rule. 

The El-Gendi method [5] is intended for application to Fredholm integral equations 
with kernels K(x, x’) possessing a discontinuous first derivative at x’ = x within the 
open interal - 1 < x’ < 1. Equation (10) must first be rewritten in the form 

in which 

UC(r) = krj,(kr) + ST Kj’)(x, x’) ul(r’) dx’ 

+ (fl - J-:j K/%x, x7 udr’) dx’ 

and 

@(x, x’) = cl 2 x,)2 krr ‘j,(kr’) nl(kr) V(r’) -- 

Kp)(x, x’) = (* _2,,). krr’j,(kr) n,(kr’) V(r’). 

(12) 

(134 

(*3b) 

This modified form of the partial-wave Schrijdinger integral equation is then approxi- 
mated by a closed system of simultaneous linear algebraic equations formed by 
applying a Clenshaw-Curtis type of quadrature formula [6] at the N Chebyshev 
points 

x,=cos(*j, [n=0,1,2 ,..., N-l]. (14) 

(Full details of the El-Gendi method are presented in Ref. [5].) The scattering phase 
shift is calculated by substituting the solution of these linear equations into the 
quadrature formula approximating the right-hand side of Eq. (11). Furthermore, the 
method provides the radial wave function as a finite Chebyshev series. 

An ALGOL 60 program, employing the El-Gendi method, has been developed to 
compute radial wave functions and scattering phase shifts of local interactions of the 
form 

W> = c At exp(-w-)/r + 14 exp(-w) 
t t 

(15) 

bt > 0, pt > 0) for any value of the orbital angular momentum I (= 0, 1, 2, 3,...) 
over any (user) specified range of positive energies I?. Table 1 displays the approximate 
times taken, per k value, on a CDC 7600 computer by this program to set up and solve 
the equations of the method in terms of the number of Chebyshev points used. By 
comparing these times with the corresponding times presented in Ref. [I] it is observed 
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TABLE 1 

Approximate Times (in Seconds) Taken on a CDC 7600 Computer by an ALGOL 60 Program to 
Set Up and Solve the Equations of the El-Gendi Method, per k value” 

I ‘N=20 N = 30 N = 40 N = 50 

0 0.37 0.94 1.80 3.04 

I 0.39 0.96 1.85 3.11 

2 0.51 1.27 2.40 4.03 

3 0.62 1.54 2.91 4.93 

4 N is the number of Chebyshev points used. The dependence on I is due to the Green’s function (4). 

that, for a given number of pivotal points and a specified value of I, the composite 
trapezoidal rule is approximately three times faster than the El-Gendi method due 
to the more complicated nature of the weights and pivotal points involved in the latter 
method. 

Tables II and III contain 9, P-, D-, and F-wave phase shifts, computed via the 
El-Gendi method, of the static electron-hydrogen potential 

V(r) = -2(l + l/r)exp(-2r). (16) 

These results are in close agreement at most energies with the phase shifts determined 
from the methods investigated in Ref. [I]. It is observed that the excellent stability 

TABLE II 

9 and P-Wave Phase Shifts (in Degrees) for the e--H Interaction (16) 

Uk) a,(k) 

k N = 20 N = 30 N = 40 N = 50 N = 20 N = 30 N = 40 N = 50 

0.1 41.3816 41.3805 41.3803 41.3802 0.0153559 0.0153548 0.0153548 0.0153548 

0.5 59.8551 59.8547 59.8546 59.8546 1.49127 I .49141 1.49141 1.49141 

1.0 51.8859 51.8827 51.8827 51.8827 6.38640 6.38696 6.38698 6.38698 

1.5 44.9365 44.9491 44.9490 44.9491 10.5659 10.5495 10.5500 10.5500 

2.0 39.8425 39.8199 39.8165 39.8168 12.7865 12.8239 12.8265 12.8263 

2.5 35.854 35.903 35.904 35.905 13.9522 13.8745 13.8679 13.8674 

3.0 32.961 32.804 32.812 32.811 14.089 14.239 14.239 14.242 

3.5 30.050 30.310 30.293 30.288 14.477 14.256 14.262 14.265 

4.0 28.315 28.158 28.174 28.183 14.065 14.112 14.109 14.100 

4.5 26.70 26.41 26.42 26.40 13.52 13.84 13.82 13.83 

5.0 24.48 24.89 24.83 24.85 13.87 13.47 13.55 13.53 

a N is the number of Chebyshev points used in the El-Gendi method. 
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properties of the three quadrature methods of Ref. [l] are also present in the El-Gendi 
method with the sole exception of the F-wave solution at k = 1 obtained with 20 
Chebyshev points. For I = (0, 1,2) there is more rapid convergence at low energies 
(k < 2), with respect to the number of pivotal points employed (but not necessarily 
in terms of computer time), with the El-Gendi method than with the composite 
trapezoidal rule, but at medium and high energies the latter converges more rapidly 
than the former (particularly in terms of computer time). 

Thus, the numerical results presented in this note and in Ref. [l] demonstrate that 
the El-Gendi method should be employed for the calculation of phase shifts at low 
energies, where the use of only 30 Chebyshev points may yield results of sufficient 
accuracy. However, the composite trapezoidal rule is recommended for the deter- 
mination of phase shifts with good overall accuracy when averaged over all energies 
and all orbital angular momenta, where the use of 40 to 50 pivotal points appears 
to be adequate. 

APPENDIX 

Both this note and Ref. [I] contain details (including numerical results) of various 
methods for computing radial wave functions and scattering phase shifts of short- 
range local interactions, particularly of the form given by Eq. (15). Some of these 
methods have also been employed to determine S-, P-, D-, and F-wave phase shifts 
of the [12, 61 Lennard-Jones potential 

V(r) = l/r12 - 2/r6, (17) 

which has a longer range than any potential of the type (15). ,The results obtained 
from a 50-point trapezoidal rule solution of Eqs. (7) and (8) [for the interaction (17)] 
are in close agreement at most energies with those yielded by the Numerov method 
solution of Eq. (1) using a step length h = 0.01 and matching points determined from 
the condition kr m 25. However, attempts to obtain an El-Gendi solution of Eq. (12) 
for the potential [17] failed because of ill-conditioning irrespective of the number of 
Chebyshev points employed. It thus appears that the El-Gendi method can be applied 
to the partial-wave Schrodinger integral equation only when V(r) has a short range. 
(The method has been used successfully with neutron-proton interactions of the form 
(15), consisting of sums of two or more Yukawa potentials, which contained repulsive 
cores and attractive outer regions.) 
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